• Skip to primary navigation
  • Skip to main content
Welcome

Chapkin Lab Home

Chapkin Lab

  • People
    • Dr. Chapkin Biography
    • CHAPKIN LAB RESEARCH STAFF
      • Meet Dr. Laurie Davidson
      • Meet Dr. Alfredo Erazo-Oliveras
      • Meet Dr. Yang-Yi Fan
      • Meet Jennifer Goldsby
      • Meet Dr. Monica Muñoz Vega
      • Meet Jaileen Rivera-Rodriguez
      • Meet Kristen Frederick
      • Meet Lexi Poston
    • CHAPKIN LAB POST-DOCTORAL RESEARCHERS
      • Meet Dr. Michael Salinas
      • Meet Dr. Vanessa Montoya Uribe
      • Meet Dr. Selim Romero
      • Meet Dr. Pritam Dey
    • CHAPKIN LAB GRADUATE STUDENTS
      • Meet Destiny Mullens
    • CHAPKIN LAB UNDERGRADUATE STUDENTS
      • Meet Jennie P. Kim
      • Meet Bailee McEwan
    • CHAPKIN LAB ADMINISTRATOR
      • Meet Ms. Elizabeth Toole Szymanski
  • News
  • Research
    • NR4A1 & Arylhydrocarbon Receptor Biology
    • Gut Stem Cell Biology
    • Host-Microbe Interactions in the Human Gut
    • Membrane Therapy
  • Publications
  • CPRIT/TREC Single Cell Core
    • Single Cell Data Science Core & Chapkin Lab
    • Events with the SCDS Core Team
    • Events Sponsored by Texas A&M University Regional Center of Excellence in Cancer Research (TREC)
    • Single Cell Data Science Core – Recently Published Research
  • Lab Funding
    • Nutritional and clinical predictors of intestinal maturation and feeding tolerance in the preterm infant
    • Targeting plasma membrane spatial dynamics to suppress aberrant Wnt signaling
    • NR4A1 antagonists inhibit colorectal cancer growth and enhance immune surveillance
    • Bayesian differential causal network and clustering methods for single-cell data
    • The selective advantage of mismatch repair loss in colonic stem cells
    • Mediterranean diet and weight loss: Targeting the bile acid/gut microbiome axis to reduce colorectal cancer risk
    • Dietary and microbial predictors of childhood obesity risk
    • Diet and the colonic exfoliome: A novel, non-invasive approach to testing interventions in humans
    • Gene – environment – lifestyle interactions in cancer
  • William W. Allen Endowed Chair
  • Gallery
  • Job Opportunities
  • Contact
  • Show Search
Hide Search

Aglient__BA2100_1

crystal.schibler · April 6, 2018 ·

RNA/DNA Quality

RNA quality can be accurately assessed on an Agilent 2100 Bioanalyzer. The Agilent 2100 Bioanalyzer is the method of choice for determining nucleic acid quality. The instrument uses microfluidics technology to separate charged molecules by size. Total RNA, polyA RNA, microRNA and DNA can be analyzed on the Bioanalyzer, 10-12 samples per chip

Submission Requirements

-Samples should be in water or dilute buffer (i.e. 10 mM Tris, 0.1 mM EDTA)
-RNA should be 25-500 ng/µl for a Nano chip or 0.2-10 ng/µl for a Pico chip
-Genomic DNA and sequencing libraries at 0.1-50 ng/µl can be run on a DNA chip
-3 µl of each sample is requested
-Results should be available within two days

A member of
Texas A&M AgriLife

Texas A&M AgriLife Extension Service | Texas A&M AgriLife Research | Texas A&M Forest Service | Texas A&M AgriLife Veterinary Medical Diagnostic Lab | College of Agriculture & Life Sciences

Compact with Texans | Privacy and Security | Accessibility Policy | State Link Policy | Statewide Search | Veterans Benefits | Military Families | Risk, Fraud & Misconduct Hotline | Texas Homeland Security | Texas Veterans Portal | Equal Opportunity | Open Records/Public Information

Copyright © Texas A&M AgriLife