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Noninvasive Detection of Candidate Molecular Biomarkers in Subjects
with a History of Insulin Resistance and Colorectal Adenomas
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Abstract We have developed novel molecular methods using a stool sample, which contains intact
sloughed colon cells, to quantify colonic gene expression profiles. In this study, our goal was
to identify diagnostic gene sets (combinations) for the noninvasive classification of different
phenotypes. For this purpose, the effects of a legume-enriched, low glycemic index, high
fermentable fiber diet was evaluated in subjects with four possible combinations of risk fac-
tors, including insulin resistance and a history of adenomatous polyps. In a randomized
crossover design controlled feeding study, each participant (a total of 23; 5–12 per group)
consumed the experimental diet (1.5 cups of cooked dry beans) and a control diet (isocaloric
average American diet) for 4 weeks with a 3-week washout period between diets. Using prior
biological knowledge, the complexity of feature selection was reduced to perform an ex-
haustive search on all allowable feature (gene) sets of size 3, and among these, 27 had (un-
biased) error estimates of 0.15 or less. Linear discriminant analysis was successfully used to
identify the best single genes and two- to three-gene combinations for distinguishing sub-
jects with insulin resistance, a history of polyps, or exposure to a chemoprotective legume-
rich diet. These results support our premise that gene products (RNA) isolated from stool
have diagnostic value in terms of assessing colon cancer risk.

Introduction

Colon cancer is one of the leading causes of cancer-related
deaths in the United States. Early detection is one of the prov-
en strategies resulting in a higher cure rate (1). Unfortunately,
the currently adopted screening procedures for early detection
are often invasive (e.g., colonoscopy), and discomfort associat-
ed with such procedures generally leads to resistance toward
the screening process. Thus, adoption of noninvasive methods
designed to reduce anxiety over colorectal cancer screening
and improve overall acceptance of the screening process
would be highly desirable.
We recently showed that a high level of dry bean intake re-

duced tumor formation in carcinogen-injected mice (2, 3) and

decreased the risk of advanced colorectal adenoma recurrence
among participants in the Polyp Prevention Trial (4). Based on
these studies, we hypothesized that a legume-enriched diet
may reduce the rate of absorption of carbohydrates, lowering
the postprandial glycemic index and insulinemic response,
leading to a suppression in the level of inflammatory media-
tors and markers of insulin resistance (IR; ref. 5). In addition,
the high level of fermentable fibers in beans would enhance
the production of butyrate, an anti-inflammatory, antineoplas-
tic short-chain fatty acid (6, 7). Although further studies are
warranted to characterize the molecular features of chemopro-
tective diets, rigorous analysis of the effects of diet on tran-
scriptome profiling has been limited thus far, largely due to
difficulties in obtaining appropriate samples. Therefore, the
development of noninvasive molecular methods using stool
for the purpose of quantifying colonic gene expression profiles
would be highly desirable.
Approximately one sixth to one third of normal adult colonic

epithelial cells are shed daily (8). Exploiting this fact, we have
developed novel noninvasive methods using feces, containing
exfoliated colonocytes, to quantify colonic mRNAs (9–11). Al-
though RNA is generally less suitable than DNA because it is
readily degraded, we and others have shown that intact fecal
eukaryotic mRNA can be isolated because of the presence of
viable exfoliated colonocytes in the fecal stream (9, 11–14).
Using exfoliated colonocytes, we have previously reported

the discriminative mRNA expression signatures between in-
flammatory bowel disease versus normal and between ade-
noma versus normal (11). These data suggest that mRNA
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isolated from exfoliated human colonocytes can be used to de-
tect early stages of colon cancer and possibly chronic inflam-
mation. However, the microarray gene expression profile–
based classification of colonic diseases for diagnostic purposes
has yet to be solved. Therefore, in this study, we further deter-
mined the feasibility of the noninvasive mRNA procedure in
patients at high risk for colorectal adenoma recurrence. Specif-
ically, the effect of a legume-enriched, low glycemic index,
high fermentable fiber diet on subjects exhibiting a combina-
tion of risk factors including IR and history of adenomatous
polyps was evaluated. To our knowledge, this is the first con-
trolled feeding study to examine the effects of legumes or a
low glycemic index diet on changes in intestinal gene expres-
sion profiles using exfoliated colonocytes. Our goal was to de-
velop diagnostic gene sets (combinations) for the objective
classification of different phenotypes. Applying this approach
to a test set of 23 subjects, we have identified the best single
genes and two- to three-gene combinations for distinguishing
polyps, IR, and exposure to a legume diet. We also report that
using combinations of genes, the classification error rate can
be significantly lowered. Two- and three-gene combinations
thus provide robust classifiers with potential to noninvasively
identify discriminative signatures for differential diagnostic
purposes.

Materials and Methods

Experimental design
After obtaining informed consent of the subjects, a controlled feed-

ing study was conducted, comparing the effects of a legume-enriched,
low glycemic index diet to the average American diet (control) in four
different groups of male participants: (a) previous history of adeno-
mas and IR; (b) previous history of adenomas with no IR; (c) IR with
no history of adenomas; and (d) no-IR and no history of adenomas.
Subjects were enrolled into a two-period crossover study in which
all four groups were randomly allocated to each of two diets: (i) a con-
trol diet); (ii) a high-legume, low glycemic index diet. The subjects (a
total of 23; 5-12 per group) consumed the experimental diets for 4 wk
with a 3-wk washout period before crossing over to the other diet. The
overall study design is shown in Fig. 1. Baseline samples were collect-
ed before commencing each diet period, and additional samples col-

lected at the end of each diet period. All procedures used in the study
were reviewed and approved by the human subjects' committees at
the Pennsylvania State University (PSU), Texas A&M University,
and the NIH. Study procedures are briefly summarized below.

Subject recruitment
Subjects were recruited with the assistance of gastroenterologists

performing colonoscopies at the Mount Nittany Medical Center in
State College, Pennsylvania. Nursing staff reviewed all colonoscopy
records for eligible participants. Eligible patients were mailed a letter
signed by their endoscopist inviting them to participate in the study
and asking them to return a postcard to indicate that they would like
to be contacted or to call the PSU study coordinator (toll-free), if they
would like to learn more about the study. A preliminary telephone
eligibility screening was completed by the coordinator, and subjects
eligible according to the phone interview were invited to the PSU
General Clinical Center Research Center (GCRC). After receiving in-
formed consent, the participant's height, weight, and blood pressure
were checked by study staff or the nurses at the clinic, and a fasting
blood sample was taken to determine overall health (including fasting
insulin and glucose to determine insulin sensitivity and cholesterol le-
vels and lab tests for heart and liver function). A physician at the
GCRC reviewed the results to determine eligibility for participation.
All eligible consented participants were asked to return to the GCRC
to assess their resting metabolic rate. Demographic, health, and life-
style questionnaires were completed, and the participants were given
instructions for completing a 4-day food record for the purpose of es-
timating pre-study baseline dietary intake.

Inclusion and exclusion criteria
Eligible participants for the study were males between 35 and 75 y

of age, with a body mass index of 25.0 to 34.9 kg/m2, and having un-
dergone a screening colonoscopy within the past 2 y. Only male sub-
jects were recruited because in our previous study, males had a greater
response to diet (e.g., beans) and exhibited a higher risk for polyp re-
currence (4). Participants could not be diagnosed with a serious med-
ical condition such as cancer, heart disease, kidney disease, diabetes,
or other serious medical condition including a history of colorectal
cancer, bowel resection, polyposis syndrome, or inflammatory bowel
disease. Subjects were not permitted to take any medication that
would alter inflammation markers, insulin, glucose, or blood lipids.
The +Polyp group had polyps removed within the past 2 y. No sub-
jects reported the development of colon polyps during the study.

Figure 1. Overall study design. BL,
baseline measurement; DP, diet period.
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Dietary intervention
Subjects consumed one meal per day, breakfast or dinner, on site

during the weekdays and consumed a packed lunch, snack, and other
meal at a time and place of convenience. Weekend meals were pre-
pared and packed for carryout. No foods other than those provided
by the study kitchen were permitted. At each visit, subjects were
weighed and asked to return any uneaten foods. Thus, compliance
was monitored on a daily basis by assessment of body weight, direct
observation of the consumption of one “in-house” meal per day, and
by daily review of uneaten foods. Subjects were also asked to record
any food items not provided by the study. Alcohol consumption was
limited to no more than two drinks per week during the controlled
feeding period. In addition to the monitoring of the dietary records,
subjects were queried daily about alcohol consumption to ensure com-
pliance. No subjects reported the consumption of non-study foods or
excessive alcohol during the week of fecal and blood collections.

A 7-day menu cycle was developed with a standard set of legumes
of the Phaseolus vulgaris species, such as navy beans, pinto beans, and
kidney beans, to limit nutrient and phytochemical differences in the 7-
day diet cycle. The diet contained ∼250 g of legumes per day (1.5
cups). This level added ∼20 g of total dietary fiber and 8 g of soluble
fiber per day. The diet was modified to provide other high glycemic
index foods in the control diet so that the glycemic index of the control
diet was ∼70, compared with a glycemic index of 30 in the legume
diet. Each daily menu was designed to maintain a constant level of
fat (32-33 energy %), whereas the high-legume low glycemic index
diet had a total dietary fiber intake of ∼40 g/d, compared with
20 g/d for the high glycemic index diet. The protein level of both diets
was ∼18 energy %. To maintain the same level of red meat and fish
(foods that have been associated with colon cancer) in both diets, the
protein in legumes was substituted for protein from poultry. All nu-
trients were provided in amounts to meet the recommended dietary
allowances for men of the same age groups. A food composite for each
of the 6 days was freeze-dried and analyzed for macronutrient and
fiber levels. Individual food items were purchased at the same time
from the same supplier to ensure uniformity of the diet.

mRNA expression microarray analysis
The overall structure of the microarray data set is shown in Supple-

mentary Table S1. Stool samples were collected by the subject into a
sterile cup, sealed, and placed at 4°C storage for up to 12 h. Samples
were then coded by the Research Assistant, homogenized in a guani-
dinium-based solution, and stored at −80°C until polyA RNAwas iso-
lated. From each subject, poly A+ RNAwas isolated from feces as we
have previously described (11). Due to the high level of bacterial RNA
in fecal samples, poly A+ RNA was isolated to obtain a highly en-
riched mammalian poly A+ RNA population. We have previously
shown that with the isolation of poly A+ RNA, contamination with
bacterial RNA is undetectable (9). In addition, an Agilent 2100 Bio-
analyzer was used to assess integrity of fecal poly A+ RNA. Samples
were processed in strict accordance to the CodeLink Gene Expression
Assay manual (Applied Microarray) and analyzed using the Human
Whole Genome Expression Bioarray as we have previously described
(15). Each array contained the entire human genome derived from
publicly available, well-annotated mRNA sequences.

Arrays were inspected for spot morphology. Marginal spots were
flagged as background contaminated (C), irregularly shaped (I), or
saturated (S) in the output of the scanning software. Spots that passed
the quality control standards were categorized as good (G). In addi-
tion, spots marked with (L) indicated the reading was “near back-
ground.” The low (L) measurements reflect either true low gene
expression levels or may have been caused by degradation of the
mRNA resulting in a low signal. Typically, samples collected from co-
lonic mucosa (15) exhibited a relatively low proportion (5-8%) of L
spots. In contrast, the proportion of L spots obtained from fecal sam-
ples was significantly higher (65-83%).

Microarray data normalization
For the purpose of interarray normalization, a set of housekeeping

genes was used. These were determined in the following manner.
Housekeeping gene preparation. Common good probes (2,584)

across all 86 microarrays were identified. A good probe is defined
as having, at most, two low measures across all 86 microarrays. Using
a list of 575 housekeeping genes (16), 18 genes were identified from
the 2,584 probes found in the previous step. Subsequently, the raw
intensity of each of the 18 housekeeping genes was quantified, and
those with missing values were excluded. As a result, there were a
total of 18 housekeeping genes used for normalization. Refer to Sup-
plementary Methods and Supplementary Fig. S1 for details.

Additive normalization procedure. Arrays were grouped across
time and the average values of 18 housekeeping genes were calculated
(Supplementary Fig. S1). Median values of the averages were also cal-
culated for the first 67 arrays. Subsequently, a robust piecewise linear
regression was done and the corresponding regression value for each
array was calculated. Following this step, the difference between the
median and regression values for each array was determined, and
the raw expression values of the genes on each array were shifted
by the corresponding discrepancies.

Development of an algorithm for identifying feature
(gene) sets
Details related to the development of an algorithm for identifying

feature (gene) sets are described in Supplementary Methods. Because
our main goal was to determine if mRNA data from exfoliated colo-
nocytes have the potential to classify different colon cancer risk fac-
tors, we compared the obtained array data sets (termed A) with a

Table 1. Classification of (+IR, +Polyps) subjects
versus (−IR, −Polyps) subjects at BL1

Gene names εbolstered Δ(εbolstered)

IGF1R 0.1094
CDK4 0.1200
BECN1 0.1223
NOS3 0.1436
ALOX12B 0.1477
NOS3, WNT1 0.1277 0.2656
HOXA3, UCP2 0.1415 0.3467
IGF1R, WNT1 0.1484 0.2449
ID2, IGF1R 0.1486 0.3139
HOXA3, YWHAZ 0.1503 0.3379
HOXA3, IGF1R 0.1513 0.3369
BECN1, HOXA3, MAPK11 0.0891 0.3991
BECN1, HOXA3, IGF1R 0.0907 0.3975
HOXA3, MAPK11, YWHAZ 0.0935 0.3947
HOXA3, HOXC6, MAPK11 0.0941 0.3941
HOXA3, MAPK11, NOS3 0.0987 0.3895
HOXA3, UCP2, YWHAZ 0.1001 0.3881
HOXA3, IGF1R, YWHAZ 0.1006 0.3876
BECN1, DAPK1, IGF1R 0.1012 0.3768
HOXA3, HOXC6, TJP1 0.1023 0.3859
HOXA3, HOXC6, IGF1R 0.1079 0.3803

NOTE: Single-gene, pair-wise, and triplet-wise LDA classifiers
are shown. εbolstered denotes the bolstered resubstitution error
for the respective classifier; Δ(εbolstered) denotes the largest de-
crease in error for the feature set relative to all of its subsets.
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set of 529 putative human colonic markers (termed B; refer to Supple-
mentary Table S2). Using such prior biological knowledge, we inves-
tigated the set of genes common to the microarrays and putative
colonic markers (Aj

k ∩ B). The number of common genes for various
values of analysis parameters is given in Supplementary Table S3.
Based on these results, we used a conservative approach that provid-
ed us with a subset of putative colonic biomarkers that have strong
signal (k = 2), compared with the CodeLink weaker default condition
(k = 1.5), and no more than one low signal spot (j = 1) in the entire data
set. It is possible, therefore, to group microarray data into various
combinations of two different classes. This is due to the experimental
design that lists risk factors: (+IR) and (−IR); four time points: baseline
1 (BL1), diet period 1 (DP1), baseline 2 (BL2), diet period 2 (DP2); and
two diets: high legume/low glycemic index and control. These differ-
ent groupings produced their respective sets of genes, which could be
larger or smaller depending on the microarrays that were included in
the corresponding groups or classes (Supplementary Table S4).

For the purpose of identifying feature sets, we designed classifiers
that categorize samples based on the expression values of the genes
from the intersection of the array gene set and the colon biomarker
list (A1

2 ∩ B). An important consideration is that the number of genes
in the feature sets should be sufficiently small. Hence, we constructed
the classifiers for feature sets of sizes 1, 2, and 3. Generally, there are
two reasons why it is desirable to design classifiers involving small
numbers of genes: (a) the limited number of samples often available
in clinical studies makes classifier design and error estimation prob-
lematic for large feature sets (17); and (b) small gene sets facilitate de-
sign of practical immunohistochemical diagnostic panels. For similar
reasons, simple classifiers are preferable for small samples; indeed, for
small samples, if good classification is possible, then a simple classifier
such as linear discriminant analysis (LDA) using a small number of
genes will typically outperform a complex classifier (18).

Given a set of features on which to base a classifier, one has to ad-
dress not only the classifier design from sample data but also the es-
timation of its error. When the number of potential feature sets is
large, the key issue is whether a particular feature set provides good
classification. Therefore, a concern is the precision with which the er-
ror of the designed classifier estimates the error of the optimal classi-
fier. When data are limited, an error estimator may have a large
variance and therefore may often be low even if it is approximately
unbiased. This can produce many feature sets and classifiers with
low error estimates. The algorithm used in this study mitigated this
problem by applying the bolstered error estimation (19). It has advan-
tages with respect to commonly used error estimators such as resub-

stitution, cross-validation, and bootstrap methods for error estimation
in terms of speed and accuracy (bias and variance). Basically, this ap-
proach “bolsters” the original empirical distribution of the available
data by means of suitable bolstering kernels placed at each data point
location. The error can be computed analytically in some cases, such
as in the case of LDA. The relatively small size of the gene set (A1

2 ∩
B) allows for the comparison of the errors of all of the possible feature
sets of sizes 1, 2, and 3, thereby avoiding feature selection, which can
be highly unreliable in small sample settings (20). The result of the
overall approach is a list of “best” feature sets from among all possible
feature sets. Hence, the best feature set is the one possessing minimum
classification error. Because we only have data and not the underlying
feature-label distributions, the errors have been estimated from the
data. This approach takes into account that, in small-sample settings,
we do not have much confidence in any single feature set and that it is
much more likely that, if there is an adequate sized collection of good-
performing feature sets, then there are likely to be some that perform
well on the overall population (21).

Results and Discussion

Classification analysis
Stool-based molecular diagnostic tests are emerging as im-

portant new approaches that have the potential of providing
cost-effective, sensitive early detection of colorectal neoplasia.
Details of many of the currently used and novel approaches
have been recently reviewed (22). Because a single genetic
product is unlikely to have sufficient detection sensitivity
and specificity to be used as a “stand-alone” diagnostic test,
a fecal-based DNA detection system that exploits the concept
of chromosomal instability with mutations progressively accu-
mulating in the adenomatous polyposis coli, p53 tumor sup-
pressor genes, and the K-ras oncogene has been recently
developed (23, 24). Publications in small trials (16-65 subjects)
reported test sensitivity ranging from 62% to 91% for adeno-
carcinoma detection and 27% to 82% for adenoma detection,
with specificity ranging from 93% to 98%. Validation of these
preliminary data in a large (4,404 evaluated subjects) prospec-
tive colorectal cancer screening trial resulted in a sensitivity of
52% (95% confidence interval, 35-68%) for detection of adeno-
carcinoma and 15% (95% confidence interval, 12-19%) for
detection of adenomas ≥1 cm, with double the sensitivity

Figure 2. The concept of intrinsically multivariate predictive (IMP) genes is shown where expression profiles of a group of genes predict the phenotype. Results
represent a linear classification of (+IR, +Polyps) subjects (○) versus (−IR, −Polyps) subjects (▵) at BL1. UCP2 and HOXA3 were used as individual one-feature sets (A
and B) as compared with both genes together as a two-feature set (C). The bolstered error is 0.2784, 0.4882, and 0.1415 for A, B, and C, respectively.
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when the adenoma had dysplasia. Specificity for the fecal
DNA test was 94% (23). Very recently, stool DNA test 2 and
a novel digital melt curve assay, which targets more broadly
informative markers, detected significantly more screen-rele-
vant neoplasms compared with occult blood testing (25, 26).
From these data, it is logical to assume that fecal DNA tests
could serve as an intermediate, noninvasive screening tool
for colorectal adenocarcinoma.
A major disadvantage of DNA-based methods is that it is

inherently limited to a small number of hybridizing oligonu-
cleotides, which reduces the likelihood that a neoplasia-asso-
ciated mutation will be found in the large number and
heterogeneity of mutational events occurring in human neo-
plasia. In addition, a fecal DNA testing panel using nucleotide
probes will not detect important epigenetic events associated
with human carcinogenesis. For example, epigenetic modifica-
tions of DNA (i.e., aberrant promoter hypermethylation) of
multiple tumor suppressor genes lead to loss of expression
(27). DNA-based methods do not detect these important mo-
lecular events. This severely limits the utility of current DNA-
based assays. Recently, several attempts have been made to
use DNA from stool to detect aberrant CpG island methyla-
tion (28, 29). Thus, it is possible that methylated genes may
be effective early detection markers for colon adenomas, and
offer another mechanistic approach that may increase perfor-
mance characteristics of stool markers based on mutation de-
tection alone.
To enhance current colon cancer molecular detection assays,

our laboratory was first to develop a novel noninvasive mo-
lecular method using feces containing intact viable exfoliated
colonocytes to quantify colonic mRNAs and determine gene
expression profiles (9). Because “global” changes in patterns
of gene expression occur throughout the colon well before
macroscopic tumors are apparent (30, 31), these data suggest
that “diagnostic” gene expression profiles are associated with
a large number of shed cells, and hence, recovered cell number
should not be a limiting factor (13).
In this feasibility study, our goal was to identify mRNA ex-

pression patterns that may establish the basis of a new nonin-
vasive molecular diagnostic method. For this purpose, we
applied an algorithm to 12 different pairs of classes arising
from the experimental design as described in Fig. 1 and Sup-
plementary Table S1. The number of genes/features for each
linear classifier was limited to 3, which allowed for an exhaus-
tive search. The use of small (three-gene) classifiers is not new
in the classification of cancer. It goes back some number of
years (21, 32). As an initial step within the context of classifi-
cation, we identified the best single genes (single-gene classi-
fiers) to distinguish phenotype. To illustrate how this
approach compares to the traditional statistical analysis, we
considered the classes (+IR, + Polyps) versus (−IR, −Polyps)
at BL1. The top 10 feature sets of size 1 were compared with
the differentially expressed genes in the colonic biomarker set
(A1

2 ∩ B), where t tests were done using normalized and log-
transformed gene intensity values. The comparison revealed
that 7 of the 10 top one-feature sets (genes) identified by the
linear (LDA) classifier also had P values <0.05. This is not sur-
prising because individual differentially expressed genes have
been traditionally used to discriminate between phenotypes
(33). Interestingly, the results show that there are several cases
where single genes can provide good (in terms of the error es-

timate) classification (Table 1). However, when comparing
these results to the two-feature classification for the same
two classes, a phenomenon was observed that has been re-
cently documented in the context of gene network modeling
(34). Specifically, the expression profiles of a group of genes
predicted the target (either a gene or a phenotype) with great-
er accuracy relative to any proper subset of these genes. For
example, single-gene classifiers (one-feature) based on either
the Homeobox protein-A3 (HOXA3) or uncoupling protein-2
(UCP2) performed very poorly when discriminating between
(+IR, + Polyps) and (−IR, −Polyps) at BL1 (Table 1; Fig. 2A and
B). Interestingly, HOXA3 was close to the worst predictor of
all of the available 97 genes (ranked 94). In comparison, when
combined as a two-feature set,UCP2 andHOXA3 provided one
of the best two-feature classifiers (one misclassified data point
only) among all of the 4,656 possible two-gene sets (Table 1;
Fig. 2C). These data clearly illustrate why complex phenotypes
can be explained better by multivariate feature sets.
To identify sets of genes that perform in a multivariate man-

ner to provide strong classification, we specifically looked for
pairs of genes that performed better than either of the genes
individually, and triplets of genes that performed well and

Table 2. Classification of (−IR, −Polyps) subjects on
control diet versus (−IR, −Polyps) subjects on the
legume diet

Gene names εbolstered Δ(εbolstered)

TGFB3 0.2350
FOXP4 0.2586
TP53 0.2970
BAD 0.3009
FOXO1A 0.3033
DAPK1, HOXA3 0.1829 0.3760
BAD, LYZL6 0.2275 0.2321
IGF1R, LEF1 0.2315 0.2488
DAPK1, FOXM1 0.2371 0.2336
IGF2, TGFB3 0.2455 0.2814
LEF1, TGFB3 0.2459 0.2344
DAPK1, TP53 0.2642 0.2426
APC, CDC42 0.2650 0.2564
DAPK1, HOXA3, TGFB3 0.1675 0.3914
DAPK1, LEF1, TGFB3 0.1799 0.3004
DAPK1, HOXA3, LEF1 0.1854 0.3735
DAPK1, HOXA3, SELP 0.1887 0.3702
CAMK2A, DAPK1, HOXA3 0.1922 0.3667
DAPK1, HOXA3, SPARC 0.1944 0.3645
DAPK1, HOXA3, PRKACG 0.1969 0.3620
DAPK1, HOXA3, SFRP5 0.1982 0.3607
BAD, FOXE3, PTK2 0.2003 0.3018
CA5B, DAPK1, HOXA3 0.2028 0.3561
CD44, DAPK1, HOXA3 0.2052 0.3537
BAD, FOXP4, GSS 0.2056 0.3112
BAD, FOXE3, PTK2B 0.2072 0.3187
APC2, DAPK1, HOXA3 0.2117 0.3472

NOTE: Single-gene, pair-wise, and triplet-wise LDA classifiers
are shown. Refer to Table 1 for legend details.
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substantially better than the best-performing pair among the
three, and so on. To estimate the improvements of the classi-
fication performance, we introduced two quantities for each
feature set: εbolstered and Δ(εbolstered). εbolstered denotes the bol-
stered resubstitution error for the LDA classifier for the respec-
tive feature set, and Δ(εbolstered) denotes the largest decrease
in error for the full feature set relative to all of its subsets.
The feature sets were initially ranked based on the value of
εbolstered, and subsequently ranked again based on the im-
provement Δ(εbolstered). For multiple-gene classifiers, we fo-
cused on feature sets with high rank in both lists. Along
these lines, we designed two-feature classifiers for the classifi-
cation of (+IR, +Polyps) versus (−IR, −Polyps) data at baseline
BL1; (−IR, −Polyps, control diet) versus (−IR, −Polyps, legume
diet) data at the end of the two diet periods DP1 and DP2;
(+IR, + Polyps) versus (−IR, −Polyps) at baselines BL1 and
BL2; (+Polyps) versus (−Polyps) at baselines BL1 and BL2;
and (+IR) versus (−IR) at all of the time points. Tables 1 and 2
describe the best (according to this ranking procedure) feature
sets identified for the first two of these classification catego-

ries, and Fig. 3A and B shows representative multivariate
classifiers.
The results in Fig. 4 show that the two factors, IR and his-

tory of adenomas, should be considered in tandem when de-
termining the risk for the patient. For example, combining
baseline samples (BL1 and BL2) increased the classification er-
ror, indicating complications related to the crossover design
(Fig. 4A). Similarly, the three-feature set LDA classifiers per-
formed poorly when the classification was considered sepa-
rately with respect to either one of the two experimental
factors (IR) or (Polyps; Fig. 4B and C). The advantage of re-
porting the results in this way is that multivariate discrimina-
tory power is revealed. This is clearly shown in Table 1 with
regard to HOXA3. The gene did not appear on the single-gene
list, indicating that the error of the respective classifier ex-
ceeded 0.3 (εbolstered = 0.4882). However, it appeared with
UCP2, 14-3-3ζ (YWHAZ), insulin growth factor receptor-I
(IGF1R), beclin-1 (BECN1), and mitogen-activated protein ki-
nase-11 (MAPK11) genes in the two-gene and three-gene lists,
which improved classification error. Interestingly, members of
the homeoprotein family of transcription factors (HOXA3 and
HOXC6) are developmental regulators of gastrointestinal
growth, patterning, and differentiation (35). It is also notewor-
thy that YWHAZ and IGF1R are capable of regulating apopto-
sis and cell adhesion (36, 37); UCP2 promotes chemoresistance
in cancer cells and mitochondrial Ca2+ sequestration (38, 39);
BECN1 stimulates autophagy and inhibits tumor cell growth
(40); and MAPK11 (p38β) mediates response to inflammatory
cytokines and cellular stress (41). For comparative purposes,
fold changes in select genes are presented in Supplementary
Table S5.
Legumes and pulses are a rich source of fermentable dietary

fibers, which are precursors to luminal butyrate (4). Butyrate
has well-known anti-inflammatory and antineoplastic actions
(6, 7). In addition, pulses have a low glycemic index (5). Some
studies suggest that diets high in fiber and with a lower gly-
cemic index may reduce risk of colorectal cancer and decrease
inflammatory markers (4, 42, 43). Therefore, it was important
to note that the approach applied in this study can be used to
identify genes that are modulated by the consumption of a le-
gume-rich diet (Table 2). Our data show that although trans-
forming growth factor β (TGFβ), which plays a permissive
role in cancer progression and wound repair (44, 45), is by it-
self a reasonable discriminator, when it is combined with
HOXA3 and death-associated protein kinase (DAPK1), the er-
ror is significantly improved. These observations are worth
noting in view of the fact that DAPK1 is an extremely pleio-
tropic molecule capable of influencing the propensity of cells
to undergo autophagy (46). Moreover, it has been recently
shown that dietary fiber (butyrate) can enhance TGFβ/
Smad3-tumor suppressor signaling in the colon (47, 48). Con-
sidering that dietary legumes promote short-chain fatty acid
production in the colonic lumen, it is probable that butyrate
may have altered TGFβ expression. Clearly, additional studies
are needed to elucidate the effect of legume consumption on
TGFβ-dependent signaling.
The objective of this proof-of-principle study was to devel-

op diagnostic gene sets for the noninvasive identification of
different phenotypes. As opposed to using expression levels
of either significantly increased or decreased genes, we ap-
plied novel mRNA-based noninvasive methods to identify

Figure 3. Effective classification of clinical phenotype or diet. A, linear (LDA)
classification of (+IR, +Polyps) subjects (○) versus (−IR, −Polyps) subjects (▵) at
BL1; B, linear (LDA) classification of (−IR, −Polyps) subjects on the control diet
(○) versus (−IR, −Polyps) subjects on the legume diet (▵) using the crossover
design and combining the microarrays from samples collected at the end of the
two diet periods DP1 and DP2.
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the best single genes and two- to three-gene combinations for
distinguishing polyps, IR, and exposure to a chemoprotective
legume-enriched diet. Similar to previous studies (20, 21, 32,
49), we report that by using combinations of genes, the classi-
fication error rate can be significantly lowered. Two- and
three-gene combinations thus provide robust classifiers with
potential to noninvasively identify discriminative molecular
signatures for differential diagnostic purposes. These findings
provide insight into a new paradigm and support the deve-
lopment of noninvasive methods using exfoliated colonocytes
to quantify colonic mRNAs. This strategy can be a comple-
mentary, and likely useful, approach to enhance current efforts
to define colon cancer risk. In addition, because of a lack of
genomic precision in defining clinically relevant phenotypes,

two- and three-gene combinations may have application in
personalized genomic medicine (e.g., the stratification of pa-
tients according to response to risk of recurrence in trials of
adjuvant treatment of the disease). Further studies are needed
to validate the prognostic power and reliability of this mole-
cular diagnostic approach.
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1  

 
Supplemental Table 1.  Overall structure of the microarray data set. 

x = array was processed; m=missing sample      
L=Legume diet; 
C=American control diet   

Subject ID Study Group BL 1 End DP 1 BL 2 End DP 2  Subject ID DP1 DP2 

LEG 01 3 x x x x  LEG 01 L C 

LEG 02 2 x x x x  LEG 02 C L 

LEG 03 1 x x x x  LEG 03 C L 

LEG 04 3 x x x x  LEG 04 L C 

LEG 05 2 x x x x  LEG 05 L C 

LEG 06 4 x x x x  LEG 06 C L 

LEG 08 3 x x x x  LEG 08 C L 

LEG 09 2 x x x x  LEG 09 L C 

LEG 10 2 x x m x  LEG 10 C L 

LEG 11 4 x x x x  LEG 11 L C 

LEG 13 1 x x m x  LEG 13 C L 

LEG 14 3 x x x x  LEG 14 C L 

LEG 18 3 x x x x  LEG 18 L C 

LEG 19 4 x x x x  LEG 19 C L 

LEG 24 4 x x x x  LEG 24 L C 

LEG 26 4 x x x x  LEG 26 C L 

LEG 27 4 x x x x  LEG 27 L C 

LEG 33 2 x x m x  LEG 33 C L 

LEG 44 1 x x m x  LEG 44 L C 

LEG 47 1 x x x x  LEG 47 C L 

LEG 49 1 x x m x  LEG 49 L C 

LEG 54 1 x x x m  LEG 54 L C 

LEG 65 3 x x x x  LEG 65 C L 

Study Group : 1 = + insulin resistance/ + polyps;    2 = - insulin resistance/ + polyps       

 

3 = + insulin resistance/ - polyps;       4 = - insulin resistance/ - polyps

*Refer to Figure 1 for details       
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Supplemental Table 2.  Final classifier gene list.  Refer to attached 529 genes - XLS file.  
 
 
Supplemental Table 3.  k

jA B∩  represents the number of genes that are common between the 

set B of established colonic biomarkers and the spots k
jA  on the microarray set that passed 

quality threshold set by the parameters k and j.  The value k=1.5 is the default value for the 
CodeLink image processing software, and j represents the number of accepted low (L) spots for 
a gene across all of the microarrays in the experiment. 
 

k
jA B∩  k = 1.5 k = 2 k = 2.5 k = 3 

j = 0 50 36 23 10 

j = 1 65 54 35 18 

j = 2 84 61 46 29 

j = 3 94 70 51 37 
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Supplemental Table 4.  Classification groups, sample size and number of common genes in 
each data set.  BL1, baseline 1; BL2, baseline 2; +IR and –IR indicate presence or absence of 
insulin resistance, respectively.  +Polyps and –polyps indicate the presence or absence of 
polyps, respectively.  
 
 

Classification Groups Sample Size Common Genes in 2
1A B∩  

(+IR,  +Polyps) VS (-IR, -Polyps)  at BL1 12 97 

(+IR,  +Polyps) on Control  VS (+IR,  +Polyps)  on Legume 11 103 

(-IR,  -Polyps) on Control  VS (-IR,  -Polyps)  on Legume 12 145 

(+IR,  +Polyps) on  Control  VS (-IR,  -Polyps) on  Control 11 121 

(+IR,  +Polyps) on Legume  VS (-IR,  -Polyps) on Legume 12 114 

(+IR,  +Polyps) VS (-IR, -Polyps) at BL1 & BL2 21 92 

(+Polyps) VS (-Polyps) at BL1 23 64 

(+IR) VS (-IR) at BL1 23 64 

(+Polyps) VS (-Polyps) at BL1 & BL2 41 59 

(+Polyps) on  Control VS (+Polyps) on Legume 21 87 

(+IR) on  Control VS (+IR) on Legume 23 74 

(+IR) VS (–IR) at all time points 86 54 
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Supplemental Table 5.  Relative exfoliated cell gene expression levels in (+IR, +Polyps) vs (-
IR, -Polyps) subjects at baseline 1 (BL1).  Fold change represents the relative expression level 
in (+IR, +Polyps) subjects divided by (–IR, -Polyps) subjects for individual genes described in 
Table 1.  p-values were computed using t-tests applied to the normalized data. 

Gene name p-value            Fold change 

ALOX12B   

BECN1     

CDK4      

DAPK1     

HOXA3     

HOXC6     

ID2       

IGF1R     

MAPK11    

NOS3      

TJP1      

UCP2      

WNT1      

YWHAZ     

   0.1841                          0.6486 

    0.0580                          0.5140 

    0.0370                          0.5787 

    0.0639                          1.1258 

    0.0202                          1.0712 

    0.0134                          0.4352 

    0.0626                          0.9413 

    0.0040                          0.4537 

    0.6291                          0.7521 

    0.0285                          0.4451 

    0.0168                          0.6092 

    0.6330                          0.7669 

    0.7147                          0.8290 

    0.0298                          0.4901 
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Supplemental Methods: 

Data Normalization.  Two normalization issues were addressed. First, there was a large 

number of low-quality spots and second, while the microarray intensities showed no aberrant 

trend up to a certain point in time (relative to when microarray was performed), after a certain 

point there was a somewhat linear decline in intensity.  Data points (blue dots) in Supplemental 

Figure 1 show the average values of the 18 housekeeping genes across microarrays, ordered 

from earliest to latest with respect to the time of processing. 

 

Development of an Algorithm for Identifying Feature (Gene) Sets.  We first examined how 

the parameters used by the CodeLink scanning software affected the number of G spots on the 

arrays.  Specifically, genes denoted by k
jA , i.e., the set of genes ix  that have at most j  raw 

mean spot intensity values less than , ,i l i lkμ σ+ , where ,i lμ  is the value of local background 

median for the spot representing the gene ix  on the l -th array, and ,i lσ  is the corresponding 

standard deviation for that background signal, were identified.  For example, 1.5
0A  is the set of 

(G) spots that are common for all of the arrays in the data set (by default 1.5k =  in the 

CodeLink software).  Spots that were flagged as (C) were not considered when the sets k
jA  

were formed.  Notice that k s
j rA A⊆  if s k≤  and j r≤  ( s and r are defined similarly to k and j ).  

In particular, k s
j jA A⊆ , s k≤  indicates a lower number of common good spots if one requires 

stronger signal, compared to the background.  Also, k k
j rA A⊆ , j r≤  demonstrates that the 

number of common genes increases if one allows more (L) spots per gene. 

 

 


