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ABSTRACT

Motivation: The goal of the study is to obtain genetic information from

exfoliated colonocytes in the fecal stream rather than directly from

mucosa cells within the colon. The latter is obtained through invasive

procedures. The difficulties encountered by this procedure are that

certain probe information may be compromised due to partially

degraded mRNA. Proper normalization is essential to obtaining useful

information from these fecal array data.

Results: We propose a new two-stage semiparametric normalization

method motivated by the features observed in fecal microarray data.

A location–scale transformation and a robust inclusion step were used

to roughly align arrays within the same treatment. A non-parametric

estimated non-linear transformation was then used to remove the

potential intensity-based biases. We compared the performance of

the new method in analyzing a fecal microarray dataset with those

achieved by two existing normalization approaches: global median

transformation and quantile normalization. The new method favorably

compared with the global median and quantile normalization methods.

Availability: The R codes implementing the two-stagemethodmay be

obtained from the corresponding author.

Contact: nwang@stat.tamu.edu

Supplementary information: Additional figures including scatter

plots, MA plots and density plots of array differences may be found

at http://stat.tamu.edu/~daisy/NSBRI/

1 INTRODUCTION

Colon cancer is the second leading cause of death from cancer in the

United States. Early detection of colon cancer can result in a high

cure rate. Unfortunately, the anxiety caused by invasive procedures

such as colonoscopy could lead to resistance toward screening

processes. The necessity of developing new non-invasive screening

methods cannot be over-emphasized. Approximately one-sixth to

one-third of normal adult colonic epithelial cells are shed daily.

Sloughed colon cells as well as their genetic material can be col-

lected from feces. The data studied in this paper were obtained from

an on-going project, which aims to recover colonic gene expression

information from exfoliated colonocytes in the fecal stream. It is

important to determine whether valid information can be obtained

from such data for a relatively large number of probes. The ultimate

goal is to develop a non-invasive mRNA procedure for colon cancer

screening.

A challenging issue on both the biological and bioinformatics

fronts is that the RNA could be partially degraded. On the biological

side, Schoor et al. (2003) suggested that partially degraded RNA

samples can still lead to meaningful conclusions if they are handled

appropriately. Davidson et al. (1995, 2003), and Kanaoka et al.
(2004) have demonstrated that intact fecal eukaryotic mRNA can

be successfully isolated. On the bioinformatics side, the need for

sensible data processing/normalization techniques that accommo-

date the existence of partially degraded genetic material is essential.

This paper investigates this issue.

Gene expression levels were collected using the CodeLink Sys-

tem from GE Healthcare. The foundation of a CodeLink array is

a proprietary 3D aqueous gel matrix slide surface with 30-base

oligonucleotide probes. Every array is inspected for spot morphol-

ogy. If a spot does not meet quality control standards, scanning

software automatically categorizes it as a specific sub-type corre-

sponding to the problems encountered. Readings from the problem-

atic spots are commonly eliminated from the final data analysis.

Besides spots which are good (G) and spots with problems such as

background contamination (C) or irregular shape (I), there are also

spots marked as ‘L’ which are spots with readings ‘near back-

ground’. The low measurements could reflect true low gene expres-

sion levels or they could be caused by degradation of the mRNA

resulting in a low signal. When partial degradation is not an issue

and the samples are collected from colonic mucosa cells (Davidson

et al., 2004), there is a low proportion (5–8%) of L spots, so no

special measures are needed to accommodate them.

Due to mRNA degradation in fecal samples, the proportion of

L spots in fecal microarrays is markedly higher. The number of

L probes varies from array to array. The chance of an L probe

belonging to the class of degraded genes is also much higher.

We note that direct applications of existing normalization methods

to the fecal array data could lead to loss of information or potentially

biased outcomes. Further explanation, including summary statistics

about the data and illustrations of our findings using the existing

methods will be provided in later sections. Since one cannot decide

whether a low spot is caused by mRNA degradation, a reasonable

strategy is to regularize the G probes and recover as much usable ‘L’

probe information as possible. As in all other microarray experi-

ments, proper normalization of the data is essential to ensure that

bias is eliminated in the final outcomes.�To whom correspondence should be addressed.
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In this paper, we demonstrate the utility of a two-step normal-

ization procedure applied to a CodeLink fecal microarray dataset.

We compare the new method with two existing normalization

methods. The assessment of all three methods is based on empir-

ical outcomes that demonstrate their ability in removing bias

without compromising underlying information.

2 DATA DESCRIPTION

The fecal bioarray data used to illustrate the procedures here were

collected from rat fecal samples. These rats were randomly assigned

to two diet groups: fish oil/pectin (D1) and corn oil/cellulose (D2)

diets. Fecal samples were collected 14 weeks after the rats were

exposed to carcinogen AOM and radiation. The goal of the experi-

ment is to understand the effects of diet on genes being differentially

expressed post carcinogen/radiation exposure (IRT). There are

7 and 6 bioarrays collected under IRT-D1 and IRT-D2, respectively.

Figure 1 displays the densities of raw log-2 intensity levels of G and

L probes for each array. The summaries of (1) total number of

‘G’ probes per array, (2) the proportion of morphologically dis-

qualified spots (not included in Fig. 1) and (3) the ratios of the

numbers of ‘L’ spots per array to the median of these numbers for all

arrays are given in Table 1 (columns a–c), respectively. It is easy to

see that there are a few bioarrays, e.g. arrays # 2 and 5 in D1, which

tend to have higher proportions of ‘L’ spots compared with others.

These arrays should tend to have more low measurements. Conse-

quently, the densities of these arrays should tend to shift toward the

left. Nonetheless, the phenomenon of certain arrays having much

higher proportions of ‘L’ spots is not obvious when simply evalu-

ating the density plots in Figure 1. Further, an array with a large

number of L probes could have its distribution shifted to the right

rather than to the left. We suspect that this is a consequence of an

automatic calibration adjustment during the scanning process in

order to better distinguish the large amount of low intensity entries.

That is, what we have observed is most likely due to the automatic

adjustment during the scanning process which is designed to regu-

larize output. However, we were not able to obtain any information

on how the scanning process is calibrated. Under the regular array

scenario, it is expected that the distributions of measurements from

different arrays should not differ much from each other. This is most

likely the scenario under which the calibration process is designed.

For the fecal array data, this automatic adjustment process is very

likely to be one factor that actually introduces biases.

2.1 Regular normalization procedures and some

graphical display

It is well recognized now that to compare gene expression levels

from two or more arrays, it is necessary to normalize the readings.

Several different approaches have been used for normalization.

Briefly, we summarize a non-exhaustive list here. The most com-

monly used normalization methods are the ‘global’ and ‘local’

normalization procedures. The former includes methods such as

global median normalization (Zien et al., 2001; Quackenbush,

2002) which aim at standardizing the location and/or scale parame-

ters of measurements from different arrays. The latter includes

various non-parametric smoothing approaches (Schadt et al.,
2001; Li and Wong, 2001) which aim at removing the intensity-

based bias. Also see Quackenbush (2002) for an overall review of

these two types of normalization methods. Besides these, the

ANOVA model-based normalization methods of Kerr et al.
(2000) and Kerr and Churchill (2001) account for multiple sources

of variation via a statistical model rather than handling them during

the pre-processing stage. Wolfinger et al. (2001) follow the same

direction of consideration and go a step further by treating various
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Fig. 1. Densities of raw log-2 intensity levels of G and L probes for each

Diet 1 array (upper) and Diet 2 array (lower).

Table 1. The summaries of (a) total number of ‘G’ probes per array, (b) the

proportion of morphologically disqualified spots and (c) ratios of the

numbers of ‘L’ spots per array to the median of these numbers

Array ID (a) (b) (c)

D1 D2 D1 D2 D1 D2

1 9635 9996 0.0125 0.0142 0.9816 0.9643

2 3940 7102 0.0624 0.0372 1.1468 1.0515

3 7164 8376 0.0148 0.0181 1.0802 1.0256

4 12453 17821 0.0232 0.0136 0.8503 0.6423

5 4967 8563 0.0220 0.0414 1.1609 0.9854

6 7965 14538 0.0486 0.0281 1.0000 0.7575

7 7070 — 0.0141 — 1.0852 —

Normalization for fecal array data

4001



coefficients as random. Several recent approaches such as Sidorov

et al. (2002) and Bolstad et al. (2003) use parametric or non-

parametric methods to transform the data so that the distribution

of the transformed intensities is the same across a set of arrays.

However, none of the above methods is readily usable for the par-

tially degraded samples we have.

To illustrate the need to develop a new method for the fecal

bioarray data and also to further display the data, we present

some graphical outcomes obtained from two normalization proce-

dures. They are (1) global median normalization and (2) quantile

normalization (Bolstad et al., 2003). The global median method is

perhaps the most commonly used method for CodeLink arrays.

The quantile normalization method is among the most sophisticated

normalization methods and is known to perform well when the

measurements from different arrays share the same underlying

distribution—an assumption which is most likely violated here

simply due to different proportions of L probes from array to

array. We provide a brief description of the two methods below

and the readers are referred to Zien et al. (2001) and Bolstad et al.
(2003) for details.

Global median normalization. This method is one of the standard

procedures for normalization of single-channel arrays. The median

log intensity of each array is subtracted from all of the log intensities

in the same array. Let mi be the median intensity of the i-th array.

Then

log x0i¼ log xi � logmi:

It simply shifts the distributions of arrays so that they are centered

around zero.

Quantile normalization. This method is proposed by Bolstad

et al. (2003). Yang and Throne (2003) adopted the same

algorithm. The idea is to force arrays to have an identical

distribution by letting

x0i¼F�1 Gi xið Þð Þ‚

where Gi is the empirical distribution function for the i-th array and
F is the empirical distribution function of the means of the quantiles

over all arrays. The quantile normalization was calculated using

software available in Bioconductor (http://www.bioconductor.org/).

In Figures 2 and 3, the scatter plots between 2 consecutive Diet 1

arrays normalized by global median and quantile methods are given,

respectively. The 45� line was imposed. All morphologically quali-

fied spots are included in the normalizing process. After global

median normalization, non-linear trends are still observed in

some of the scatter plots. The quantile method, on the other

hand, removes the gene-to-gene correspondence between genes

from two arrays within the same treatment group. Inferences on

gene expression profiles become meaningless if no genetic informa-

tion is left after normalization. Scatter plots and MA plots (Dudoit

et al., 2002) with all possible pairwise combinations within each

diet are provided in the Supplementary materials.

To check whether the normalization outcomes could be improved

using G probes only, the scatter plots between two consecutive

Diet 1 arrays using global median normalization is produced in

Figure 4. Both Figures 2 and 4 indicate that there exist non-

linear relationships between 2 arrays under the same treatment.

The non-linear patterns in this scenario are often, though not always,

similar to those of corresponding arrays when all morphologically

disqualified spots were used. We also produced equivalent figures

using quantile normalization with our own codes and the codes in

bioconductor (results not shown). The former is similar to Figure 4

while the latter generates plots with very few points due to the fact

that most probes have at least one observation not being ‘G’. This

simply suggests that a direct application of quantile normalization is

not appropriate here.

Fig. 2. Scatter plots between two consecutive Diet 1 arrays normalized by global median method.
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3 TWO-STAGE METHOD

In this article, we propose a two-step normalization procedure moti-

vated by features observed in CodeLink fecal microarray datasets.

Before describing the steps within the normalization procedure,

we have summarized the basic principles behind the proposed

procedure.

� We assume that even with different proportions of L probes

for different arrays, there exists a central ‘peak’ within the

‘G’ probes in each array such that the location and variation

embedded in these central peaks enable us to perform a

location–scale transformation to roughly align at least the central

part of the majority of the arrays within the same treatment.

Fig. 3. Scatter plots between two consecutive Diet 1 arrays normalized by quantile method.

Fig. 4. Scatter plots between two consecutive Diet 1 arrays normalized by the global median normalization using G probes only.

Normalization for fecal array data
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� Besides ‘aligning’ all arrays through location–scale transfor-

mations, we used local smoothing techniques to correct for

intensity-based biases within each treatment group. This cor-

rection procedure mimics the idea behind non-linear transfor-

mation and corrects upward/downward biases of each array by

comparison to the trend of its peer(s). Discussions on this type

of methods for cDNA microarray data are given in Yang and

Dudoit (2002). For CodeLink arrays, there are no G/R channels

within the same array, as in two-channel cDNA arrays. Here, the

peers are the arrays within the same treatment group. A simple

robust inclusion step is introduced so that the majority of the

‘L’ probes were excluded during this process of identifying

non-linear transformation to align signals in arrays within the

same treatment group.

Suppose there are i¼ 1, . . . , I treatment groups, each with ni
arrays and the j-th arrays containing mij genes. In what follows,

we describe the normalization procedure.

Step I. We apply a linear transformation to the ‘central’ q% of

log-2 transformed gene expressions in each array to ‘best’ match the

central q% of standard normal distribution. Here, the central loca-

tion is defined to be the model of the central peak among ‘G’ probes.

The procedure is carried out as follows:

(1) collecting the closest M items from both sides of the mode

in the array to form a new set of intensities called xc; 2M ¼
minij(mij · q/100);

(2) for the ij-th array, subtracting these central observations xc
by its mode b0ij and then using the least square rule to find

out the best scaling constant b1ij that minimizes the sum of

squared distances between the shifted percentiles and the

corresponding central standard normal percentiles; and

(3) obtaining the new intensities by computing x0 ¼ b1ij ·
(x� b0ij); here x is the log transformed gene expression value.

In practice, we let q¼ 25, that is, we use the central 25% of

the data. We have let q vary up to the central 50% but observe

no differences when performing gene by gene analysis at

the latter stage. It is worth mentioning that we identified b0ij
and b1ij using peaks among ‘G’ probes. Equivalent transfor-

mations can be roughly achieved using both ‘G’ and ‘L’

probes. This is not surprising. Certain systematic differences

among measurements from one bioarray to another were

formed most likely during the scanning and image processing

stage—with the whole bioarray image being processed at the

same time, regardless if a spot is ‘G’ or ‘L’.

(4) with our main objective being to regularize ‘G’ probes, we

performed a very simple gene-by-gene step to include

‘L’ probes that behave similarly to other ‘G’ probes in the

same gene, and excluded outlying ‘G’ probes. Basically, we

did the following ‘robust inclusion step’:

� For a gene with less than three ‘G’ probes, we only included

the ‘G’ probes.

� When there are three or more ‘G’ probes for a gene, we

roughly estimate the central location of gene expression

levels in this gene by the median of the ‘G’ probes and

the standard deviation by the range divided by 4, following

the empirical rule which states that central location ±2 SD

covers the central 95% of the data. Any ‘L’ probes with

values within the median ±3 SD are also included.

This simple step is motivated by the particular data structure we

encounter here. It could certainly be applied in other situations for

robustness consideration. Extreme outlying observations can be

tentatively eliminated by the normalization procedure. The method

is simple and consequently can be quickly calculated. Summary

statistics from this step actually provide some additional interesting

information which offers some insight into why a direct application

of quantile transformation does not work well here. Specifically, the

assumption that all ‘usable’ measurements from each array are from

the same distribution could be violated, depending on which probes

were used in the normalization steps. When the number of replicates

within each treatment becomes large, further robustness considera-

tions can be implemented. This simple procedure works rather well

for our example. We also tried to use median absolute deviation

(MAD) to estimate SD. However, since the number of arrays

within the same treatment was not very large, MAD tends to be

so conservative that many reasonable points were not used in the

estimation.

Step II. With the central area roughly matched across all arrays,

the second step in our method involved using the local smoothing

method to correct the intensity-based biases associated with mea-

surements in arrays within the same treatment group. A baseline

array, which we chose to be the median of ‘qualified’ measurements

of each gene, is specified for each treatment group. The objective is

to correct for the shared upward or downward non-linear trend by

genes from the same array particularly in the non-central area. This

is carried out by identifying their trend against the baseline array.

More precisely,

(1) taking the transformed intensities from the previous step for

arrays within the same treatment group i and finding the med-

ians of each gene to form the baseline array, mi;

(2) creating a local polynomial fit to the mean (or median),

denoted by f̂f ij, for the ij-th array, with theXs being the baseline
array values and theYs being the transformed intensities in the

ij-th array.

(3) updating the intensities in the ij-th array by subtracting the

fitted values, f̂f ij, and adding mi.

Note that since the central q% values of each array would already

be well matched, the correction of the second step tends to occur in

the area outside the central range. For example, if one array whose

up-regulated genes consistently have higher values than those taken

from the same genes in different arrays under the same treatment

group, this phenomenon will be identified by an upward trend in f̂f
against the baseline median array. This intensity-based bias can

therefore be removed through subtracting f̂f . We have tried both

local polynomial fits to conditional mean and conditional median,

where the latter estimation is carried out using local polynomial

quantile regression (‘quantreg’ in R) by Koenker (2005).

The above transformation put the emphasis within treatment

group alignment. When the mis-alignment among different treat-

ment groups is a concern, a very simple modification using quantile

transformation can be added.We can simply replace themi in Step 3

bym�
i with m�

i being the quantile transformed values ofmi. For the

majority of cases, if a gene has all ‘L’ spots in one treatment group,

it tends to have all ‘L’ spots in all treatment groups. This is because

L.-Y.D.Liu et al.
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bacteria may target the breakdown of certain nucleotide sequences.

Consequently, for genes with multiple ‘G’ probes, we have mi for

almost all these genes in all groups. This simple step warrants that

the probe medians from different treatment groups follow the same

distribution. This is a much weaker assumption than requiring

that the usable probe values in each bioarray follow the same

distribution.

4 RESULTS

We applied our method to a CodeLink fecal microarray dataset.

In the first step, we matched the ‘central’ 25% of the G probes to the

equivalent central 25% standard normal distribution. Both the local

polynomial mean and median estimates were carried out in the

second step to adjust intensity-based biases among arrays within

the same treatment. No noticeable differences between the two

methods were observed for any arrays. Figure 5 shows one example

of the correction by local smoothing methods. Transformed inten-

sities after the first step are plotted against the ‘baseline intensities’,

which are medians of qualified measurements of each gene. Even

though the local polynomial estimated means/medians were calcu-

lated using genes after the robust-inclusion step, genes before the

implementation of the robust-inclusion step were plotted in Figure 5.

To reduce the size of the graph, only the highest 40% of L probes

values were kept in the plot. No L probes in the lower 60% were

included into the second step after the implementation of robust-

inclusion step. Probes with low intensity values compared with the

corresponding baseline intensities were visible in the lower half of

the graph. The solid red line (local polynomial mean estimates) and

dotted green line (local polynomial median estimates) were

imposed. The final transformed observations were formed by sub-

tracting the fitted values from the first stage transformed intensities

and adding back the corresponding baseline intensities.

In Figure 6, gene-by-gene scatter plots between two consecutive

Diet 1 arrays after two-stage normalization are given. The points are

nicely scattered around the 45� lines. Unlike the results of global

median transformation in Figure 2, the non-linear trends have been

properly removed. Differing from observations after quantile trans-

formations, Figure 6 shows that after two-stage transformation, if a

gene is highly expressed in one array, it tends to have a larger

chance to be highly expressed in another array within the same

treatment group. Scatter plots and MA plots with all possible pair-

wise combinations are provided in the supplementary website. They

collectively support the same conclusion.

5 DISCUSSION

We have proposed a two-stage normalization procedure for the

processing of exfoliated colonocyte microarray data. One main

feature of the data is the existence of a large number of outlying

observations due to the fact that part of the mRNA has been

degraded. Our method is built on simple non-parametric smoothing

techniques with robustness consideration; consequently it can be

applied to array data and the calculation can be completed in a

reasonable amount of time. For the smoothing method, we have

tried both local polynomial estimated mean and local polynomial

estimated medians. They perform about the same since some pre-

caution has been taken to exclude outlying observations before

smoothing. The former can be computed faster than the latter.

When in doubt, one can always compute both and compare the

outcomes to ensure that the influence of outlying observations is

properly controlled.

Currently, our emphasis on biological investigation focuses on

evaluating the feasibility of using the newly developed biological

and bioinformatics methods to properly extract information

from the fecal microarray data. For this purpose, we compare the

outcomes of testing the diet treatment effect using the responses

transformed by the quantile-normalization method and by the

new method, respectively. For both responses, we performed

gene-by-gene mixed effect analyses, accounting for the dependence

of replicative arrays produced with biological samples from

the same subject. We then used the resulting diet effect p-values
to calculate the false discovery rates, namely the q-values of

Storey (2002). For the quantile-normalized responses, we found

no gene that had a q-value <0.1 in the analysis. However, when

we analyzed the responses normalized by the new method, there

were 351 genes with q-values <0.1.
When we compared the outcomes with those from a previously

conducted mucosal microarray experiment which shared a similar

experimental setup as our current experiment, we also found certain

evidence that comparable information can be obtained from the two

experiments. For example, the diet treatment effects for the probe

‘gap junction membrane channel protein beta 1’ are significant in

both experiments and the estimated diet 1 to diet 2 fold-changes for

the mucosal and fecal samples are 0.7 and 0.72, respectively. For the

fecal samples, the transformed data were rescaled, through the

matching quantiles, back to the original scale in each treatment

group before the fold-changes were calculated. We also found

that the treatment effects for ‘arginase 2’ to be significant in

both experiments and the estimated diet 1 to diet 2 fold-changes

for the mucosal and fecal samples are 2.0 and 2.5, respectively.

Obviously, with the gene-array platforms, the exact experimental

setups and the sample sizes in the two experiments being different,

we should not over-interpret the outcomes of such comparisons.

Nonetheless, these findings provide support to the belief that one

can obtain useful information from the partially degraded fecal

microarray data.

Fig. 5. Scatter plot of the intensities of the first array receiving Diet 1 versus

corresponding medians after the first stage of normalization. The red line

indicates the local polynomial mean estimates and the green line, the local

polynomial median estimates at the second stage.
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