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Abstract
Diet is an important risk factor for colorectal cancer (CRC), and several dietary constituents implicated in CRC are modified 
by gut microbial metabolism. Microbial fermentation of dietary fiber produces short-chain fatty acids, e.g., acetate, propion-
ate, and butyrate. Dietary fiber has been shown to reduce colon tumors in animal models, and, in vitro, butyrate influences cel-
lular pathways important to cancer risk. Furthermore, work from our group suggests that the combined effects of butyrate and 
omega-3 polyunsaturated fatty acids (n-3 PUFA) may enhance the chemopreventive potential of these dietary constituents. We 
postulate that the relatively low intakes of n-3 PUFA and fiber in Western populations and the failure to address interactions 
between these dietary components may explain why chemoprotective effects of n-3 PUFA and fermentable fibers have not 
been detected consistently in prospective cohort studies. In this review, we summarize the evidence outlining the effects of 
n-3 long-chain PUFA and highly fermentable fiber with respect to alterations in critical pathways important to CRC preven-
tion, particularly intrinsic mitochondrial-mediated programmed cell death resulting from the accumulation of lipid reactive 
oxygen species (ferroptosis), and epigenetic programming related to lipid catabolism and beta-oxidation-associated genes.
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Introduction

CRC is the third most common cancer in the USA [1]; CRC 
and precursor lesions (e.g., hyperplastic and adenomatous 
polyps) [2] could be greatly reduced through dietary modi-
fication (i.e., increased dietary fiber intake and altered fat 
intake) [3]. In the 2018 Colorectal Cancer Report, part of 
the WCRF/AICR Continuous Update Project, the Expert 
Panel classified evidence supporting consumption of fiber-
rich foods and CRC protection as “convincing” [4], noting a 
9% decrease in risk of every 10 g/d increase in fiber among 
15 studies in the meta-analysis. Inconsistencies across epi-
demiologic studies are attributed in part to lower and nar-
rower ranges of fiber intake in Western populations [5]. 
Intakes greater than the current recommendations (28 g/d for 
women/35 g/d for men) show robust CRC protection (RRs 
0.72 to 0.90) [2, 6–8]. However, less than 5% of Americans 
meet recommended intakes for dietary fiber (mean ~ 15 g/d) 
[2, 9]. One hypothesized chemoprotective mechanism is 
fiber fermentation to short-chain fatty acids (SCFA), particu-
larly butyrate, by gut microbiota [10–12]. Given the impor-
tance of fiber fermentation, consideration of fiber subtypes 
and variation in microbial capacity to produce butyrate [13] 
are important. We review evidence that fiber type in concert 
with other dietary factors modulates the relation between 
dietary fiber and CRC risk.

Several mechanisms have been hypothesized to explain 
how dietary fiber may reduce CRC, including a reduction 
in secondary bile acids, reduced intestinal transit time, and 
increased stool bulk [10–12]. One hypothesized chemo-
protective mechanism is fiber fermentation to short-chain 
fatty acids (SCFA), particularly butyrate, by gut microbiota 
[10–12]. Butyrate is a potent histone deacetylase inhibitor 
[14, 15] associated with reduced CRC risk [14, 16–18]. 
Thus, dietary factors that may influence the production of 
butyrate are important to understand. Indeed, it is becoming 

increasingly apparent that modulation and consideration of 
fiber subtypes (i.e., soluble and insoluble or more and less 
fermentable) can influence the microbial interspecies com-
petition to alter butyrate production [13, 19–21]. However, 
given the importance of fiber fermentation as a source for 
butyrate, very few studies in humans have looked at fiber 
subtype and results have included both null [8, 22, 23] and 
inverse associations [24–27] with CRC. We hypothesize that 
the inconsistencies may be due in part to the interaction of 
other dietary factors with fiber. Therefore, in this review, we 
discuss evidence that fiber type in concert with other dietary 
factors (i.e., n-3 PUFA) modulates the relation between die-
tary fiber and CRC risk.

In observational studies, evidence is mixed for associa-
tions between subtypes of fat and CRC [8, 28]. Omega 3 
(n-3, α-linolenic acid, ALA) and omega 6 (n-6, α-linolenic 
acid, LA) PUFA are essential nutrients that are incorporated 
into tissue membranes and have a variety of physiologic 
roles. Long-chain n-3 PUFA, eicosapentaenoic acid (EPA), 
and docosahexaenoic acid (DHA), found in fish oils [29], 
can be produced from ALA, but the process is inefficient in 
humans, and there is competition with synthesis of other n-6 
PUFA, which are found in much greater abundance in a typi-
cal Western diet [30]. While both are structural components 
and substrates of eicosanoid-related pathways, in general, 
PUFA derived from n-6 are pro-inflammatory, whereas those 
produced from n-3 tend to have opposing effects [31, 32]. 
Given the strong association between inflammation and CRC 
[32], higher intakes of n-3 PUFA provide biological plausi-
bility for a chemoprotective effect [33].

As with dietary fiber, preclinical models consistently 
show reduced CRC risk with n-3 PUFA [34–37]. How-
ever, epidemiologic data are less consistent in part because 
intakes are often low and most studies do not adequately 
capture supplemental fish oil intake. Two meta-analyses con-
cluded that fish intake is associated with decreased CRC risk 
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[38, 39]; however, two systematic reviews of n-3 PUFA on 
cancer risk qualitatively concluded that there is inadequate 
[40] or limited [41] evidence to suggest an association. A 
recent publication reported no overall association between 
n-3 PUFA and CRC risk among 123,529 individuals; how-
ever, in sub-site analyses, n-3 PUFA intakes were positively 
associated with distal colon cancer, but inversely associated 
with risk of rectal cancer in men [42]. Conversely, separate 
evaluation in the same cohort suggests that n-3 PUFA intake 
after CRC diagnosis may have a protective effect on sur-
vival [43]. Compared with women who consumed < 0.1 g/d 
of marine n-3 PUFA, those who consumed > 0.3 g/d had 
a reduced CRC-specific mortality (HR 0.59, 95% CI 0.35, 
1.01), and those who increased their intake by at least 
0.15 g/d after diagnosis had an even greater reduction (HR 
0.3, 95% CI 0.14, 0.64, P trend < 0.001). In the VITamins 
And Lifestyle (VITAL) cohort (n = 68,109), evaluating fish 
oil supplement use—where doses are often much higher than 
what can be obtained from diet—users on 4 + d/wk for 3 + yr 
experienced 49% lower CRC risk than nonusers (HR = 0.51, 
95% CI = 0.26–1.00, P trend = 0.06) [44]. Interestingly, CRC 
patients who consumed dark fish (> 1/wk) after diagnosis 
had longer disease-free survival [45], supporting further the 
need for higher doses than typically obtained with a US diet.

Interaction of Long‑Chain n‑3 PUFA 
and Dietary Fiber in Clinical Studies

Fat and fiber are two dietary components with the greatest 
impact on tumor development, and data support the con-
cept that the type of fat or fiber is actually more important 
to tumor development than total amounts of either compo-
nent [9, 46–50]. Unfortunately, the effect of combinations 
of specific subtypes of dietary fiber and fatty acids and risk 
of CRC in humans is just beginning to be evaluated. This 
is an important consideration given their varied biologic, 
biochemical, and metabolic roles [8, 9, 48, 51]. Among the 
nearly 97,000 Seventh Day Adventists, risk of CRC was 
reduced by 22% among all vegetarians combined com-
pared to non-vegetarians, but the protection was greatest 
among pescovegetarians, who consumed high amounts of 
both fiber and n-3 PUFA-containing fish (HR 0.57, 95% 
CI 0.40, 0.82) [52]. Further, striking reciprocal changes 
in gut mucosal cancer risk biomarkers and microbiome 
were reported after African-Americans were given a high-
fiber, low-fat diet and rural Africans a high-fat, low-fiber 
Western-style diet [53]. Significantly increased butyrate 
production and reduced secondary bile acid concentra-
tions were noted after the diet exchange to high-fiber, 
low-fat intake in African-Americans [53]. A subsequent 
analysis in the Rotterdam prospective cohort lends support 

to the hypothesis that higher intakes of fat and fiber are 
important factors mediating the relationship between these 
variables. Increased risk of CRC was observed with n-3 
PUFA intake when dietary fiber intakes were below the 
median, while fiber intakes above the median in combina-
tion with higher n-3 PUFA were associated with reduced 
risk [54]. Furthermore, when evaluated by food sources 
of n-3 PUFA, increased CRC risk was restricted to intake 
from non-marine sources. These mixed results for fat and 
fiber and CRC risk underscore the urgent need for con-
trolled studies using standardized intakes of fat and fiber 
subtypes and consideration of the potential impact of the 
gut microbiome.

Mechanisms of Action: Fat and Fiber 
Interaction

We conducted a series of seminal studies using both pre-
clinical and in vitro models looking at molecular mecha-
nism of action and providing strong evidence for a com-
bined effect of types of fat and fiber in relation to colon 
tumorigenesis. The combination of bioactive components 
from fish oil (i.e., DHA and EPA n-3 PUFA) and prebiotic 
fermentable fibers (i.e., pectin) act synergistically to pro-
tect against colon cancer, in part, by enhancing apoptosis 
at the base of the crypt throughout all stages (initiation, 
promotion, and progression) of colon tumorigenesis [34, 
55–60]. Interestingly, the combination of these agents was 
(i) more effective in blocking tumorigenesis compared to 
either compound alone; (ii) more effective compared to 
other fat (e.g., corn oil) and fiber (e.g., cellulose); (iii) pro-
tective effects were due to increased apoptosis rather than 
decreased cell proliferation; and (iv) the same phenotype 
emerged in both cancer and non-cancer cells [61]. Initially, 
the effects of fat (fish oil or corn oil, 15 g/100 g) and fiber 
(pectin or cellulose, 6 g/100 g) diets with and without car-
cinogen for 36 wks (2 × 2 × 2 × 2 factorial design, n = 160 
rats, 10/group) were assessed with respect to colon cancer 
progression and various other aspects of colonocyte physi-
ology [34, 62]. Fish oil resulted in a significantly lower 
proportion of animals with adenocarcinomas relative to 
corn oil feeding (56% vs. 70%, P < 0.05). While pectin led 
to a lower incidence (57% vs. 69%, NS), the combination 
of fish oil and pectin compared to corn oil and cellulose 
led to a greater reduction than fish oil alone (51% vs. 76%, 
P < 0.05) [34]. In addition, fish oil and pectin, alone and in 
combination, resulted in significantly higher colonic apop-
totic indices compared to corn oil or cellulose [34, 63].

Butyrate, produced from fermented fiber, induces apop-
tosis in tumor cells as well as T cells, the source of colonic 
inflammation [64], through inhibition of histone deacety-
lases (HDACi) and activation of the Fas receptor-mediated 
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extrinsic death pathway [48, 62, 64–66]. HDACi occurs in 
a concentration-dependent manner, and the butyrate con-
centration to which colonic epithelial cells are exposed 
is dependent on the gut microbiome. However, the role 
of butyrate in the induction of colonocyte apoptosis may 
be a secondary consequence to its ability to promote cel-
lular oxidation. Butyrate induces cellular reactive oxygen 
species (ROS) when metabolized [61, 67]. This is rele-
vant because long-chain PUFA from fish oil (e.g., DHA, 
EPA) incorporated into cell membranes are susceptible to 
oxidation due to their high degree of unsaturation [35]. 
Lipid peroxidation can directly trigger release of pro-
apoptotic factors from mitochondria into the cytosol [51]. 
To study ROS generation and antioxidant response via 
synergy between butyrate and n-3 PUFA, rats were fed 
corn oil + cellulose or fish oil + pectin. Colonocytes from 

rats fed fish oil + pectin had increased ROS, but reduced 
DNA damage [55]. Importantly, this enhanced oxidative 
stress, in particular membrane lipid oxidation, e.g., the 
formation of phospholipid hydroperoxides, was associated 
with exponentially increased programmed cell death [55, 
68–70]. These findings indicate that fish oil plus ferment-
able fiber modulate the redox environment, promoting 
lipid oxidation-mediated apoptosis, thus protecting the 
colon against oxidative stress. Consistent with this hypoth-
esis, combined effects of n-3 PUFA and butyrate-induced 
apoptosis were partially blocked by co-incubation with a 
mitochondrial-targeted antioxidant [71], and overexpres-
sion of glutathione peroxidase 4 (Gpx4), which catalyzes 
the reduction in hydrogen peroxide, organic hydroperox-
ides, and most specifically, lipid hydroperoxides [70]. This 
is particularly noteworthy, because the Gpx4-dependent 

Fig. 1   Proposed mechanisms by 
which supplemental n-3 PUFA 
and butyrate from bacterial fiber 
fermentation may reduce cancer 
risk. n-3 PUFA + fermentable 
fiber will attenuate mitochon-
drial antioxidant defenses and 
promote colonocyte mitochon-
drial Ca2+- and Gpx4-dependent 
ferroptosis, a form of intrin-
sic programmed cell death. 
Increased butyrate exposure will 
also extrinsically alter cancer-
related pathways in a CRC 
chemopreventive direction
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peroxidation of PUFA in cell membranes has been linked 
to ferroptosis, a promising new mechanism to kill therapy-
resistant cancers [72, 73]. These novel findings suggest 
a regulated cell death nexus linking the metabolism of 
dietary fiber and n-3 PUFA, redox biology, and cancer 
chemoprevention.

Since mitochondria play a key role in both apoptosis 
and necrosis by regulating energy metabolism, intracellular 
Ca2+ homeostasis, caspase activation, and ROS release [74], 
we examined effects of DHA and butyrate on intracellular 
Ca2+ in mouse colonocytes [61]. Mitochondrial-to-cytosolic 

ratios were significantly increased compared to non-treated 
cultures, and a concomitant 43% increase in apoptosis com-
pared to colonocytes treated with butyrate alone, but not 
DHA alone [61]. Complementary studies assessing whether 
DHA/butyrate-induced cell death is p53-mediated, estab-
lishing that Ca2+ accumulation serves as the trigger for pro-
grammed cell death in a p53-independent manner. DHA (but 
not EPA) and butyrate uniquely modulate intracellular Ca2+ 
compartmentalization and channel entry to induce colono-
cyte apoptosis [48, 51]. These data are consistent with the 
hypothesis that n-3 PUFA and butyrate together, compared 

Fig. 2   Putative epigenetic effects of n-3 PUFA and fermentable fiber 
on global histone post-translational epigenetic programming in the 
colon. The pescovegetarian diet (n-3 PUFA from fish and dietary 
fiber) upregulates EPA and DHA ligand-dependent nuclear receptors. 
Transcriptional events are further enhanced by the increased produc-
tion of butyrate via fiber fermentation, which directly and indirectly 

modifies histone acetylation. These combinatorial effects enhance 
the mitochondrial L-carnitine shuttle, inhibit lipogenesis, and pro-
mote the accumulation of acetyl-CoA-dependent beta-oxidation. The 
enhanced mucosal beta-oxidation maintains a hypoxic environment in 
the gut and promotes the growth of obligate anaerobic bacteria and 
inhibits dysbiotic microbial expansion
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to butyrate alone, enhance colonocyte programmed cell 
death by inducing a p53-independent, lipid oxidation-sen-
sitive, mitochondrial Ca2+-dependent (intrinsic) cell death 
pathway (Fig. 1). Since the balance between cell prolifera-
tion and apoptosis is critical for maintaining a steady-state 
cell population, disruption of homeostatic mechanisms can 
result in clonal expansion and tumorigenesis. It is clearly 
established that colonic transformation of ademoma to carci-
noma is associated with a progressive inhibition of apoptosis 
[34, 75].

With respect to epigenetic programming, the effects 
of highly chemoprotective combination of fish oil and 
pectin on mouse colonic mucosal microRNA expression 
and their targets have been recently described [76]. The 
data indicate that this fat x fiber combination can modu-
late stem cell regulatory networks. In a complementary 
rat colon cancer progression model, the combinatorial 
diet (fish oil and pectin) uniquely modified global histone 
post-translational epigenetic programming, resulting in 
the upregulation of lipid catabolism and beta-oxidation-
associated genes [63] (Fig. 2). Interestingly, emerging evi-
dence indicates that colonocyte metabolism, e.g., mito-
chondrial beta-oxidation, determines the types of microbes 
that thrive in the gut [77, 78]. Thus, dietary fat x fiber 
interactions may uniquely promote mechanisms that drive 
beta-oxidation induced hypoxia, thereby maintaining the 
growth of obligate anaerobic bacteria. This will help sus-
tain a normal “healthy” symbiotic environment and stabi-
lize mucosal barrier function [79].

Heterogeneity in Microbial Fermentation 
Capacity Affects Host Response to Dietary 
Fiber and Fat

Diet affects CRC risk in part by contributing particular 
substrates (e.g., dietary fiber, phytochemicals) that result 
in microbial production of chemoprotective metabo-
lites and modulation of specific gut microbial species 
[80]. However, these dietary effects are also modulated 
by the metabolic capacity of the microbial community. 
We showed recently that human colonic exfoliome gene 
expression response to a flaxseed lignan intervention 
depended on the composition of the microbial commu-
nity at baseline prior to our intervention to modulate the 
production of the enterolignan, enterolactone [81]. The 
individuals that lacked the enterolactone microbial con-
sortia never produced it during the intervention. Similarly, 
bacterial fermentation of dietary fibers and production of 
SCFA vary across individuals, driven partly by differences 
in gut microbial community structure and function [12]. 
Even in controlled feeding studies, where all participants 

receive the same food, substantial variation in fecal SCFA 
concentrations is reported [53, 82].

A key factor in determining the availability of butyrate 
and setting apoptotic and other regulatory events in motion 
is the contribution of the gut microbiome to fiber fermen-
tation. Types of complex carbohydrates consumed (e.g., 
dietary fibers, resistant starch) influence prevalence of cer-
tain consortia of gut bacteria and subsequent metabolites 
to which the host is exposed [83–96]. The microbiome 
responds rapidly to dietary interventions [97], although 
individual responses may differ [98–101]. Bacteria ferment 
fiber to SCFA, predominantly acetate, butyrate, and propion-
ate, in a ratio of 3:1:1 [102] via metabolic pathways unique 
to anaerobic gut bacteria [103–106]. Butyrate producers 
form a functional cohort, rather than a monophyletic group, 
distributed across four different phyla: Firmicutes, Fuso-
bacteria, Spirochaetes, and Bacteroidetes [107]. Butyrate 
is produced from fermentation via multiple pathways: the 
acetyl-CoA [21, 108], glutarate [109–111], 4-aminobutyrate 
[112–114], and lysine pathways [115–117], but distribution 
of these pathways in the human microbiome varies [107]. 
The dominant pathway associated with butyrate production 
is the acetyl-CoA pathway. The last step in conversion to 
butyrate across these multiple pathways is carried out by 
butyryl-CoA transferase (but) and butyrate kinase (buk) 
[107, 118–120]. Acetate, often viewed as the final product 
of fermentation, supports syntrophy (cross-feeding) in the 
gut microbiome. For example, Roseburia spp. can condense 
acetate produced by other bacteria to produce butyrate via 
butyryl-CoA/acetate-CoA transferase and butyrate produc-
tion is affected by the type of dietary fiber [121]. Vital et al. 
[122] suggested that targeting specific human microbiome 
genes involved in butyrate production across these pathways 
gives a comprehensive picture of microbial butyrate produc-
tion or “butyrogenic potential” in terms of gut resilience and 
a lower incidence of intestinal inflammation. These multiple 
pathways for bacterial production of butyrate ensure optimal 
butyrate availability to the host.

Methane-producing Archaea may also influence butyrate 
production in the gut [123]. Only a subset of healthy adult 
populations (~ 40%) harbor Archaea, and among these indi-
viduals, an inverse association has been reported between 
fecal methanogen and butyrate concentrations [124]. 
Hydrogenotrophs, methanogens, and eubacterial acetogens 
compete for H2 produced during fiber fermentation. The 
methanogens use H2 to generate methane, whereas the ace-
togens use H2 to reduce CO2 to acetate via the acetyl-CoA 
pathway [125]. Because they lack butyrate kinase, these 
microbes can coexist with other fermenters. Thus, the pres-
ence of methanogens may alter H2 availability and contribute 
to differential exposure to butyrate and indirectly to CRC 
risk across populations [124].
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Changes in Cancer‑Pathway Measures 
with Fish Oil and SCFA in Healthy Humans

Mechanistic investigation of diet effects on apoptosis 
has been conducted primarily in colon cancer cell lines, 
although examples of in vivo changes in normal human 
colon with fish oil suggest that diet effects on healthy 
colonic mucosa are measurable. For example, individuals 
with a history of adenomas received one of two dietary 
interventions: (i) 20% total fat and increased n-3 PUFA 
via dietary fish + fish oil (~ 100 mg EPA + 400 mg DHA/d, 
n = 21 experimental group) or (ii) 20% total fat only 
(n = 20, comparison). After 24 mos, the apoptotic index, 
Bax-positive cells, and Bax/Bcl-2 ratio were significantly 
increased in normal mucosa among those randomized to 
increased n-3 PUFA, whereas no change was observed 
in the comparison group [126]. In patients with resected 
polyps, EPA (2 g/d), supplementation for 3 mos resulted 
in higher apoptosis at the base of the crypt in normal 
colonic mucosa and significantly decreased cell prolifera-
tion, while no change was noted in the control group [127]. 
Finally, results of a recent dietary intervention suggest that 
distinct fat–fiber combinations have differential effects on 
cell proliferation in normal colonic mucosa [53]. Individu-
als with colorectal adenomas also have increased crypt cell 
proliferation and decreased apoptosis in macroscopically 
normal appearing colonic mucosa [127], and progressive 
inhibition of apoptosis in the transformation of normal 
colorectal mucosa to carcinoma [75]. These findings sup-
port the importance of an “etiologic field effect” in the 
colon [128], and the assertion that understanding effects 
of diet on cancer-related pathways in normal tissue is an 
essential part of cancer-prevention research.

Gut Microbiome, Diet and Tumorigenesis

While most dietary fat is absorbed in the small intestine, 
some enters the colonic lumen. High-fat diets rich in 
saturated fats (Western diet) alter gut microbial compo-
sition with negative health outcomes [129–132]. In con-
trast, recent studies suggest that high n-3 PUFA influence 
the gut microbiome favorably or have no negative health 
effects [133, 134]. Exposure to EPA and DHA increases 
Lactobacillus and Bifidobacteria and reduces Helicobac-
ter and Fusobacteria nucleatum [133–138], important 
prebiotic effects given that increases in Lactobacillus and 
Bifidobacteria are associated with reduced inflammation 
[139–142]. Both Helicobacter and F. nucleatum are patho-
gens and n-3 PUFAs can act as antibacterial or bacterio-
static compounds. Differential susceptibility of bacteria to 

n-3 PUFAs is likely to be due to their ability to permeate 
the outer membrane or cell wall, which will enable access 
to the sites of action on the inner membrane leading to 
membrane disruption. Studies also suggest associations 
between specific microbes, and CRC may be associated 
with diet [143]. Fusobacterium nucleatum has been shown 
to promote colorectal tumor growth and inhibit antitumor 
growth in animal models and is detected in a subset of 
human colorectal neoplasias [144]. In a large prospec-
tive cohort using data from the Nurse’s Health Study and 
Health Professionals Follow-up Study, diets rich in whole 
grains and dietary fiber are associated with a lower risk 
of F nucleatum—positive, but not F nucleatum—nega-
tive, CRC, supporting a potential role for gut microbiota 
in mediating the association between diet and colorectal 
neoplasms [145].

Conclusions

Studies in animals have shown that both n-3 PUFA and a 
bacterial metabolite of dietary fiber (butyrate) may reduce 
colon tumor formation and that the two in combination 
are even more effective than either alone. Several novel 
mechanisms of action have been suggested, including 
the enhancement of a Gpx4-dependent, lipid oxidation-
sensitive, Gpx-4, and mitochondrial-dependent cell death 
pathway in the colonic mucosa. In humans, some epide-
miologic studies suggest that people who consume high-
fiber diets or use n-3 PUFA supplements may have a lower 
risk of CRC; however, there are currently no controlled 
dietary interventions evaluating the combined effects of 
these two dietary constituents on CRC-relevant pathways 
in humans. Data from preclinical and mechanistic studies 
support an important role for gut microbe-derived SCFA, 
particularly butyrate, in combination with n-3 PUFA, in 
reduction in colon tumorigenesis. However, although both 
n-3 PUFA [34, 146–149] and fiber [150–153] alone have 
been studied, no clinical studies have been conducted to 
translate these combinatorial findings to humans. We pro-
pose that low intakes of fiber and n-3 PUFA in Western 
populations, and the failure to address an interaction, may 
explain why the chemoprotective effects of n-3 PUFA and 
fermentable fibers are not detected consistently in prospec-
tive cohort studies.

Key Messages

•	 n-3 PUFA and butyrate from bacterial fiber fermenta-
tion may reduce colorectal cancer risk.
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•	 Fat and fiber interaction (pescovegetarian diet) induces 
intrinsic mitochondrial-mediated programmed cell 
death in the colon which reduces colorectal cancer risk.

•	 Fish oil and fermentable fiber intake uniquely promote 
mucosal beta-oxidation which maintains a hypoxic 
environment in the gut and promotes the growth of 
obligate anaerobic bacteria, thereby inhibiting dysbi-
otic microbial expansion.
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